Logarithms Part IV
Changing the base of logarithms
Changing from base a to base c
$\ \log_a b = \frac{\log_c b}{log_c a} $
Changing from base 3 to base 10
$\ \log_3 5 = \frac{\log_{10} 5}{log_{10} 3} $
Solving log equations that involve changing of base
Example 1
Solve the following equation $ \log_9 x + \log_3 x = 15 $
$ \begin{aligned}
\log_9 x + \log_3 x &= 15 \\
\frac{\log_3 x}{\log_3 9} + \log_3 x &= 15 \qquad \text{changing base} \\
\frac{\log_3 x}{\log_3 3^2} + \log_3 x &= 15 \\
\frac{\log_3 x}{2\log_3 3} + \log_3 x &= 15 \qquad \text{applying power law}\\
\frac{\log_3 x}{2} + \log_3 x &= 10 \qquad \log_3 3 =15 \\
\log_3 x + 2\log_3 x &= 30 \\
\log_3 x + 2\log_3 x &= 30\log_3 3 \qquad 1 = \log_3 3 \\
\log_3 x + \log_3 x^2 &= \log_3 3^{30} \qquad \text{applying power law}\\
\log_3 x^3 &= \log_3 3^{30} \qquad \text{applying product law}\\
x^3 &= 3^{30} \qquad \text{comparing arguments} \\
x &= \sqrt[3] {3^{30}} \\
x &= 3^{10} \\
\end{aligned}$
Example 2
Given that $ a = \log_{10} 5 $ and $ b = \log_{10} 3 $
Express the following in terms of a and b:
i) $ \log_{10} 15 $
ii) $ \log_{10} 45 $
iii) $ \log_5 2 $
i)
$\begin{aligned}
\log_{10} 15 &= \log_{10} ( 5 \times 3 ) \\
&= \log_{10} 5 + \log_{10} 3 \\
&= a + b \\
\end{aligned}$
iI)
$\begin{aligned}
\log_{10} 45 &= \log_{10} ( 5 \times 3^2 ) \\
&= \log_{10} 5 + 2\log_{10} 3 \\
&= a + 2b \\
\end{aligned}$
iii)
$\begin{aligned}
\log_5 2 &= \frac{ \log_{10} 2}{ \log_{10} 5} \\
&= \frac{ \log_{10} 2}{ a } \\
&= \frac{ \log_{10} \frac{10}{5} }{ a } \\
&= \frac{ \log_{10} 10 - \log_{10} 5 }{ a } \\
&= \frac{ 1 - a }{ a } \\
\end{aligned}$
Changing from base a to base c
$\ \log_a b = \frac{\log_c b}{log_c a} $
Changing from base 3 to base 10
$\ \log_3 5 = \frac{\log_{10} 5}{log_{10} 3} $
Solving log equations that involve changing of base
Example 1
Solve the following equation $ \log_9 x + \log_3 x = 15 $
$ \begin{aligned}
\log_9 x + \log_3 x &= 15 \\
\frac{\log_3 x}{\log_3 9} + \log_3 x &= 15 \qquad \text{changing base} \\
\frac{\log_3 x}{\log_3 3^2} + \log_3 x &= 15 \\
\frac{\log_3 x}{2\log_3 3} + \log_3 x &= 15 \qquad \text{applying power law}\\
\frac{\log_3 x}{2} + \log_3 x &= 10 \qquad \log_3 3 =15 \\
\log_3 x + 2\log_3 x &= 30 \\
\log_3 x + 2\log_3 x &= 30\log_3 3 \qquad 1 = \log_3 3 \\
\log_3 x + \log_3 x^2 &= \log_3 3^{30} \qquad \text{applying power law}\\
\log_3 x^3 &= \log_3 3^{30} \qquad \text{applying product law}\\
x^3 &= 3^{30} \qquad \text{comparing arguments} \\
x &= \sqrt[3] {3^{30}} \\
x &= 3^{10} \\
\end{aligned}$
Example 2
Given that $ a = \log_{10} 5 $ and $ b = \log_{10} 3 $
Express the following in terms of a and b:
i) $ \log_{10} 15 $
ii) $ \log_{10} 45 $
iii) $ \log_5 2 $
i)
$\begin{aligned}
\log_{10} 15 &= \log_{10} ( 5 \times 3 ) \\
&= \log_{10} 5 + \log_{10} 3 \\
&= a + b \\
\end{aligned}$
iI)
$\begin{aligned}
\log_{10} 45 &= \log_{10} ( 5 \times 3^2 ) \\
&= \log_{10} 5 + 2\log_{10} 3 \\
&= a + 2b \\
\end{aligned}$
iii)
$\begin{aligned}
\log_5 2 &= \frac{ \log_{10} 2}{ \log_{10} 5} \\
&= \frac{ \log_{10} 2}{ a } \\
&= \frac{ \log_{10} \frac{10}{5} }{ a } \\
&= \frac{ \log_{10} 10 - \log_{10} 5 }{ a } \\
&= \frac{ 1 - a }{ a } \\
\end{aligned}$
Comments
Post a Comment