Logarithms Part III
Laws of logarithm
Product Law
$\ \log_a mn = \log_a m + \log_a n $
note that the logarithms are of the same base
Quotient Law
$\ \log_a {\frac{m}{n}} = \log_a m - \log_a n $
note that the logarithms are of the same base
Power Law
$\ \log_a m^n = n\log m $
Important: $\ \log_a xy^n \ne n\log_a xy $
The power n belongs to the base y only. The power n does not belong to base x
$ \begin{aligned}
\log_a xy^n &= \log_a x + \log_a y^n \quad \text{ applying power law} \\
\log_a xy^n &= \log_a x + n\log_a y \\
\end{aligned}$
Using the Laws of logarithms to solve equations
Strategy
Example 1
$ \begin{aligned}
\lg {(5y +2)} &= 1 +\lg y \\
\lg {(5y +2)} &= \lg 10 +\lg y \qquad \text{Note that} 1 = \lg10 \\
\lg {(5y +2)} &= \lg 10y \qquad \text{(applying product law)} \\
5y + 2 &= 10y \qquad \text{(comparing arguments)} \\
5y &= 2 \\
y &= \frac{2}{5} \\
\end{aligned}$
Example 2
$ \begin{aligned}
\log_3 {(5y +7)} &= 2 +\log_3 {(y + 4)} \\
\log_3 {(5y +7)} &= 2\log_3{3} + \log_3 {(y + 4)} \qquad \text{Note that} 2 = 2\log_3{3} \\
\lg {(5y +2)} &= \lg 10y \qquad \text{(applying product law)} \\
5y + 2 &= 10y \qquad \text{(comparing arguments)} \\
5y &= 2 \\
y &= \frac{2}{5} \\
\end{aligned}$
Example 3
Solve the following equation
$\log(x+20) - \log(x+2) = \log x $
$\begin{aligned}
\log(x+20) - \log(x+2) &= \log x \\
\log \frac{ x+20}{ x+2 } &= \log x \\
\frac{ x+20}{ x+2 } &= x \\
x + 20 &= x^2 + 2x \\
x^2 + x - 20 &= 0 \\
(x + 5)( x - 4) &= 0 \\
x = -5 \; \text{rejected} \qquad x = 4 \\
\end{aligned} $
$ x = -5 $ is rejected as you cannot log a negative value
Example 4
Solve the following equation: $ 3^{x-4} = 5^{x-1} $
$\begin{aligned}
3^{x-4} &= 5^{x-1} \\
\log{3^{x-4}} &= \log{5^{x-1}} \qquad \text{log both sides} \\
(x-4) \log{3} &= (x-1) \log{5} \\
x( \log{3} - \log{5}) &= 4\log{3} - \log{5} \\
x &= \frac{4\log{3} - \log{5}}{ \log{3} - \log{5}} \\
\end{aligned} $
$ log_{10} 3 $ and $ log_{10} 5 $ can both be evaluated using the calculator
Take home message
To solve log equations:
What's Next?
Click here to check out how to solve log equations involving change of base
Click here for Contents Page
Product Law
$\ \log_a mn = \log_a m + \log_a n $
note that the logarithms are of the same base
Quotient Law
$\ \log_a {\frac{m}{n}} = \log_a m - \log_a n $
note that the logarithms are of the same base
Power Law
$\ \log_a m^n = n\log m $
Important: $\ \log_a xy^n \ne n\log_a xy $
The power n belongs to the base y only. The power n does not belong to base x
$ \begin{aligned}
\log_a xy^n &= \log_a x + \log_a y^n \quad \text{ applying power law} \\
\log_a xy^n &= \log_a x + n\log_a y \\
\end{aligned}$
Using the Laws of logarithms to solve equations
Strategy
- Obtain a single logarithm function on the LHS as well as the RHS
- Ensure that logarithm functions on the LHS and RHS have the same base
- Compare the arguments to solve for x
Example 1
$ \begin{aligned}
\lg {(5y +2)} &= 1 +\lg y \\
\lg {(5y +2)} &= \lg 10 +\lg y \qquad \text{Note that} 1 = \lg10 \\
\lg {(5y +2)} &= \lg 10y \qquad \text{(applying product law)} \\
5y + 2 &= 10y \qquad \text{(comparing arguments)} \\
5y &= 2 \\
y &= \frac{2}{5} \\
\end{aligned}$
Example 2
$ \begin{aligned}
\log_3 {(5y +7)} &= 2 +\log_3 {(y + 4)} \\
\log_3 {(5y +7)} &= 2\log_3{3} + \log_3 {(y + 4)} \qquad \text{Note that} 2 = 2\log_3{3} \\
\lg {(5y +2)} &= \lg 10y \qquad \text{(applying product law)} \\
5y + 2 &= 10y \qquad \text{(comparing arguments)} \\
5y &= 2 \\
y &= \frac{2}{5} \\
\end{aligned}$
Example 3
Solve the following equation
$\log(x+20) - \log(x+2) = \log x $
$\begin{aligned}
\log(x+20) - \log(x+2) &= \log x \\
\log \frac{ x+20}{ x+2 } &= \log x \\
\frac{ x+20}{ x+2 } &= x \\
x + 20 &= x^2 + 2x \\
x^2 + x - 20 &= 0 \\
(x + 5)( x - 4) &= 0 \\
x = -5 \; \text{rejected} \qquad x = 4 \\
\end{aligned} $
$ x = -5 $ is rejected as you cannot log a negative value
Example 4
Solve the following equation: $ 3^{x-4} = 5^{x-1} $
$\begin{aligned}
3^{x-4} &= 5^{x-1} \\
\log{3^{x-4}} &= \log{5^{x-1}} \qquad \text{log both sides} \\
(x-4) \log{3} &= (x-1) \log{5} \\
x( \log{3} - \log{5}) &= 4\log{3} - \log{5} \\
x &= \frac{4\log{3} - \log{5}}{ \log{3} - \log{5}} \\
\end{aligned} $
$ log_{10} 3 $ and $ log_{10} 5 $ can both be evaluated using the calculator
Take home message
To solve log equations:
- Obtain a single logarithm function on the LHS as well as the RHS
- Ensure that logarithm functions on the LHS and RHS have the same base
- Compare the arguments to solve for x
What's Next?
Click here to check out how to solve log equations involving change of base
Click here for Contents Page
Comments
Post a Comment