Applications of DIfferentiation Part V
Connected Rates of Change
Example 1
A curve has the equation $ y = (5x-2)(\sqrt{2x + 2}) $
a) Find $\frac{dy}{dx} $ in the form of $ \frac{ ax }{ \sqrt{2x + 2} } $
Using Product rule
$\begin{aligned}
\frac{dy}{dx} &= (5x-2)\frac{1}{2}( 2x + 2)^{-\frac{1}{2}}( 2 ) + 5\sqrt{2x + 2} \\
&= \frac{ 5x - 2 }{ ( 2x + 2)^{\frac{1}{2} } } + 5\sqrt{2x + 2} \\
&= \frac{ 5x - 2 + 2x + 2 }{ \sqrt{2x + 2} } \\
&= \frac{ 7x }{ \sqrt{2x + 2} } \\
\end{aligned} $
b) Hence find the rate of change of x when x = 7 when y is change at a rate of 4 units per second
Given $ x = 7 \qquad \frac{dy}{dt} = 4 $
$\begin{aligned}
\frac{dy}{dt} &= \frac{dy}{dx} \times \frac{dx}{dt} \\
4 &= \frac{ 7x }{ \sqrt{2x + 2} } \times \frac{dx}{dt} \\
4 &= \frac{ 49 }{ \sqrt{14 + 2} } \times \frac{dx}{dt} \\
\frac{dx}{dt} &= \frac{16}{49} \\
\end{aligned} $
Example 1
A curve has the equation $ y = (5x-2)(\sqrt{2x + 2}) $
a) Find $\frac{dy}{dx} $ in the form of $ \frac{ ax }{ \sqrt{2x + 2} } $
Using Product rule
$\begin{aligned}
\frac{dy}{dx} &= (5x-2)\frac{1}{2}( 2x + 2)^{-\frac{1}{2}}( 2 ) + 5\sqrt{2x + 2} \\
&= \frac{ 5x - 2 }{ ( 2x + 2)^{\frac{1}{2} } } + 5\sqrt{2x + 2} \\
&= \frac{ 5x - 2 + 2x + 2 }{ \sqrt{2x + 2} } \\
&= \frac{ 7x }{ \sqrt{2x + 2} } \\
\end{aligned} $
b) Hence find the rate of change of x when x = 7 when y is change at a rate of 4 units per second
Given $ x = 7 \qquad \frac{dy}{dt} = 4 $
$\begin{aligned}
\frac{dy}{dt} &= \frac{dy}{dx} \times \frac{dx}{dt} \\
4 &= \frac{ 7x }{ \sqrt{2x + 2} } \times \frac{dx}{dt} \\
4 &= \frac{ 49 }{ \sqrt{14 + 2} } \times \frac{dx}{dt} \\
\frac{dx}{dt} &= \frac{16}{49} \\
\end{aligned} $
Comments
Post a Comment